The Boston Diaries

The ongoing saga of a programmer who doesn't live in Boston, nor does he even like Boston, but yet named his weblog/journal “The Boston Diaries.”

Go figure.

Wednesday, June 09, 2004

Somebody forgot their towel …

Several months ago I took over ownership of the Hitchhiker's Guide Project: A Complete Repository Of Characters, Planets, & Other Hoopy Froods from a friend who no longer wanted to deal with it (and I've been meaning to overhaul it, but eh … it can wait). There's a contact page that people can use to send me comments and occasionally I'll even respond to them.

But today … today I got the following:

I printed off a copy of a jpeg in 2002 of a honda accord with a caption stating “The automotive equivalent of a really hot librarian”. Is this jpeg still available? I loved it and want to print it in color as a tribute to fellow librarians everywhere.

Excuse me?

I could understand someone not realizing the site is a tribute to Douglas Adams' Hitchhiker's Guide to the Galaxy and asking me questions about hitchhiking, but this?

Sometimes I really do wonder about people …

Update on Thursday, June 10th 2004

A comment about this from the previous owner of the site:

You'll occasionally get that question from Librarians and people in that industry. I did host that image for a brief time, for reasons I won't go into right now. Check your access logs, you'll find 404s for honda.jpg scattered through them, since a bunch of places never corrected for link rot.

I feel a bit better now …


Programs from the past

Rooting around in the mustier corners of my harddrive, I came across this program I had written nearly a decade ago while attending FAU. At the time, I was a Computer Science major, working in the Math Department for two Ph. D.s, one out of the Psychology Department and one from the Center for Complex Systems, both of which were studying biophysics.

Not that I understood anything of what they actually did; all I did (besides keeping a few computers up and running) was write programs to their specifications.

The program I found was one of three I wrote dealing with a pair of equations they were studying:

x1 = ((A × y) + B) × x × (1 - x)
y1 = ((C × x) + D) × y × (1 - y)

From what little I remember, I seem to recall this being a form of simulation of two neurons interacting, but I have no idea how to interpret the results; all I know is that it can produce some rather striking images by ploting the results, then feeding those back into the equation, repeating this several thousand times. By changing the constants A, B, C and D you get wildly different results.

This program was had four slider controls that allowed to you vary the constants and updated the result in real time (and was quite impressive to view on the SGI workstation on my desk at school). The second one (written for a particular video card on a PC) would randomly pick A, B, C and D; you could view the previous 16 images and blow any of them up (or save the parameters to disk for later viewing). You could also have it step sequentially through values. This program was actually the backdrop for a BBC interview of one of the doctors I was working for.

The third program I wrote was a bit more complex. Instead of plotting the results of interation through the equations, it instead kept track of the results, and when it detected a loop, it would then save the number of points generated before a loop was detected (some values of A, B, C and D would vasillate between two or three points, while other values of A, B, C and D would never repeat even after 5,000 interations). And it worked its way systematically, varying A through its range of values and keeping B, C and D constant. It would then bump B up, and then run through all values of A, then bump B up, and so on until B hit its upper limit, then bump C up a bit, and so on. It took the better part of a year to run through all values of A, B and C. Then the data was plotted in three dimentions, using time as one of the dimentions (basically, an animation of a rather odd looking two dimentional image) and stored on video tape (which took me the better part of three days making, having to edit about five minutes of video frame-by- frame).

Again, not that I understood what the results where, just that I did it.

I enjoyed the work, and the office space was incredible; there are days when I wish I was still in that office.

Sigh.

Just for a lark, I decided to Google for the doctors I worked for and came across some of their recent work:

A new proprietary de novo peptide design technique generated ten 15- residue peptides targeting and containing the leading nontransmembrane hydrophobic autocorrelation wavelengths, “modes”, of the human m1 muscarinic cholinergic receptor, m1AChR. These modes were also shared by the m4AChR subtype (but not the m2, m3, or m5 subtypes) and the three- finger snake toxins that pseudoirreversibly bind m1AChR. The linear decomposition of the hydrophobically transformed m1AChR amino acid sequence yielded ordered eigenvectors of orthogonal hydrophobic variational patterns. The weighted sum of two eigenvectors formed the peptide design template. Amino acids were iteratively assigned to template positions randomly, within hydrophobic groups. One peptide demonstrated significant functional indirect agonist activity, and five produced significant positive allosteric modulation of atropine-reversible, direct- agonist-induced cellular activation in stably m1AChR-transfected Chinese hamster ovary cells, reflected in integrated extracellular acidification responses. The peptide positive allosteric ligands produced left-shifts and peptide concentration-response augmentation in integrated extracellular acidification response asymptotic sigmoidal functions and concentration-response behavior in Hill number indices of positive cooperativity. Peptide mode specificity was suggested by negative crossover experiments with human m2ACh and D2 dopamine receptors. Morlet wavelet transformation of the leading eigenvector- derived, m1AChR eigenfunctions locates seven hydrophobic transmembrane segments and suggests possible extracellular loop locations for the peptide-receptor mode-matched, modulatory hydrophobic aggregation sites.

Designing Human m1 Muscarinic Receptor-Targeted Hydrophobic Eigenmode Matched Peptides as Functional Modulators

Yea, I don't understand it either.

And that's just the abstract. I can't imagine how impenatrable the actual paper is.

Obligatory Picture

Trying to get into the festive mood this year

Obligatory Contact Info

Obligatory Feeds

Obligatory Links

Obligatory Miscellaneous

Obligatory AI Disclaimer

No AI was used in the making of this site, unless otherwise noted.

You have my permission to link freely to any entry here. Go ahead, I won't bite. I promise.

The dates are the permanent links to that day's entries (or entry, if there is only one entry). The titles are the permanent links to that entry only. The format for the links are simple: Start with the base link for this site: https://boston.conman.org/, then add the date you are interested in, say 2000/08/01, so that would make the final URL:

https://boston.conman.org/2000/08/01

You can also specify the entire month by leaving off the day portion. You can even select an arbitrary portion of time.

You may also note subtle shading of the links and that's intentional: the “closer” the link is (relative to the page) the “brighter” it appears. It's an experiment in using color shading to denote the distance a link is from here. If you don't notice it, don't worry; it's not all that important.

It is assumed that every brand name, slogan, corporate name, symbol, design element, et cetera mentioned in these pages is a protected and/or trademarked entity, the sole property of its owner(s), and acknowledgement of this status is implied.

Copyright © 1999-2024 by Sean Conner. All Rights Reserved.