The Boston Diaries

The ongoing saga of a programmer who doesn't live in Boston, nor does he even like Boston, but yet named his weblog/journal “The Boston Diaries.”

Go figure.

Monday, January 16, 2012

99 ways to program a hex, Part 8: C99, const and restrict correctness

Much like the difference between part 1 and part 4, there is very little difference between today's code and yesterday's code:

/*************************************************************************
*
* Copyright 2012 by Sean Conner.  All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
*
* Comments, questions and criticisms can be sent to: sean@conman.org
*
*************************************************************************/

/* Style: C99, const and restrict correctness */

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>

#define LINESIZE	  16

static void 	do_dump		(FILE *const restrict,FILE *const restrict);

/****************************************************************/

int main(const int argc,char *const restrict argv[])
{
  if (argc == 1)
    do_dump(stdin,stdout);
  else
  {
    for (int i = 1 ; i < argc ; i++)
    {
      FILE *fp = fopen(argv[i],"rb");
      if (fp == NULL)
      {
        perror(argv[i]);
        continue;
      }

      printf("-----%s-----\n",argv[i]);
      do_dump(fp,stdout);
      fclose(fp);
    }
  }

  return EXIT_SUCCESS;
}

/******************************************************************/

static void do_dump(FILE *const restrict fpin,FILE *const restrict fpout)
{
  unsigned char  buffer[BUFSIZ];
  size_t         offset;
  size_t         bread;
  
  offset = 0;

  while((bread = fread(buffer,1,BUFSIZ,fpin)) > 0)
  {
    unsigned char *pbyte = buffer;

    while (bread > 0)
    {
      char ascii[LINESIZE + 1];
      
      fprintf(fpout,"%08lX: ",(unsigned long)offset);
      size_t j = 0;

      do
      {
        fprintf(fpout,"%02X ",*pbyte);
        if (isprint(*pbyte))
          ascii [j] = *pbyte;
        else
          ascii [j] = '.';
        pbyte  ++;
        offset ++;
        j      ++;
        bread  --;
      } while ((j < LINESIZE) && (bread > 0));

      ascii [j] = '\0';

      if (j < LINESIZE)
	for (size_t i = j ; i < LINESIZE ; i++) fprintf(fpout,"   ");

      fprintf(fpout,"%s\n",ascii);      
    }
    
    if (fflush(fpout) == EOF)
    {
      perror("output");
      exit(EXIT_FAILURE);
    }
  }
}

/***************************************************************/

C99 adds restrict to the ways one can modify the access to a variable. The rational behind this is a bit esoteric—it tells the compiler that a pointer is the only pointer to a block of memory.

Yes, it does seem odd to have to add a keyword for that, but it does help with code optimization. For instance, the following (silly) function:

int foo(int *p1,int *p2)
{
  *p2 =  *p1 * 17;
  return *p1 * 17;
}

The problem here is that the compiler has to do the multiplication twice, as p2 could be pointing to the same location as p1, and thus, the contents pointed to by p1 could be modified. So the compiler is forced to write machine code like:

foo:		mov	ebx,[esp + 4]	; get p1
		mov	eax,[ebx]	; read *p1
		imul	eax,17		; multiply
		mov	edx,[esp + 8]	; get p2
		mov	[edx],eax	; save results in *p2
		mov	eax,[ebx]	; read *p1
		imul	eax,17		; multiply
		ret

Not exactly optimum, but the C compiler is constrained because of the semantics of pointers in C. Change the C code a bit:

int foo(int *restrict p1,int *restrict p2)
{
  *p2 =  *p1 * 17;
  return *p1 * 17;
}

And the compiler can now produce:

foo:		mov	ebx,[esp + 4]	; get p1
		mov	eax,[ebx]	; read *p1
		imul	eax,17		; multiply
		mov	edx,[esp + 8]	; save
		mov	[edx],eax	; return result
		ret

Okay, it's only a savings of two instructions (plus an an additional read) but when you're trying to multiply huge matrices, it can add up.


Notes on a conversation while driving to dinner

“It's been a long time since I've seen Richard Chamberlain on television,” she said. “I didn't recognize him.”

“You didn't recognize a seven foot black man?” he asked.

“Darling,” she said, “you're thinking of Wilt Chamberlain. I'm talking about the actor, Richard Chamberlain.”

“Oh,” he said. “So you didn't recognize a five-five white guy then? Ouch!”

Obligatory Picture

An abstract representation of where you're coming from]

Obligatory Contact Info

Obligatory Feeds

Obligatory Links

Obligatory Miscellaneous

Obligatory AI Disclaimer

No AI was used in the making of this site, unless otherwise noted.

You have my permission to link freely to any entry here. Go ahead, I won't bite. I promise.

The dates are the permanent links to that day's entries (or entry, if there is only one entry). The titles are the permanent links to that entry only. The format for the links are simple: Start with the base link for this site: https://boston.conman.org/, then add the date you are interested in, say 2000/08/01, so that would make the final URL:

https://boston.conman.org/2000/08/01

You can also specify the entire month by leaving off the day portion. You can even select an arbitrary portion of time.

You may also note subtle shading of the links and that's intentional: the “closer” the link is (relative to the page) the “brighter” it appears. It's an experiment in using color shading to denote the distance a link is from here. If you don't notice it, don't worry; it's not all that important.

It is assumed that every brand name, slogan, corporate name, symbol, design element, et cetera mentioned in these pages is a protected and/or trademarked entity, the sole property of its owner(s), and acknowledgement of this status is implied.

Copyright © 1999-2024 by Sean Conner. All Rights Reserved.